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Summary. Many studies have shown that segregating 
quantitative trait loci (QTL) can be detected via linkage 
to genetic markers. Power to detect a QTL effect on the 
trait mean as a function of the number of individuals 
genotyped for the marker is increased by selectively geno- 
typing individuals with extreme values for the quantita- 
tive trait. Computer simulations were employed to study 
the effect of various sampling strategies on the statistical 
power to detect QTL variance effects. If  only individuals 
with extreme phenotypes for the quantitative trait are 
selected for genotyping, then power to detect a variance 
effect is less than by random sampling. I f  0.2 of the total 
number of individuals genotyped are selected from the 
center of the distribution, then power to detect a variance 
effect is equal to that obtained with random selection. 
Power to detect a variance effect was maximum when 0.2 
to 0.5 of the individuals selected for genotyping were 
selected from the tails of the distribution and the remain- 
der from the center. 
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Introduction 

Numerous studies have shown that individual loci affect- 
ing quantitative traits (Henceforth QTL) can be detected 
via linkage to genetic markers (Sax 1923; reviewed by 
Soller 1990). Studies of this nature have been facilitated 
in the last decade by the development of methods to 
detect polymorphisms at the DNA level (Beckmann and 
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Soller 1983; Jeffreys et al. 1985; Kashi et al. 1990; Litt 
and Luty 1989; Soller and Beckmann 1983; Weber and 
May 1989). A few studies have also estimated marker- 
linked QTL effects on the variance of traits (Edwards 
et al. 1987; Stuber et al. 1987; Weller 1987; Weller et al. 
1988; Zhuchenko et al. 1979). Under the null hypothesis 
of equal variance, the ratio of the variances of two differ- 
ent marker genotypes will have a central F-distribution. 
Significant deviation from the expected ratio of unity is 
indicative of a marker-linked variance effect. All of these 
studies found significant effects. 

For certain traits, variance may be more important 
economically than the mean. For crossbreeding plants, it 
is important that all individuals flower at the same time. 
For efficient mechanical harvesting, it is desirable that all 
fruit should ripen at the same time. Likewise it is desir- 
able that all chicks should hatch after the same incuba- 
tion period. Furthermore, as noted by Asins and Car- 
bonell (1988), even if all of the QTL genotypes in a n  F 2 

of a cross between two inbred lines have equal variance, 
the marker genotypes may have different variances due 
to dominance at the QTL and incomplete linkage be- 
tween the QTL and the genetic marker. Thus, even if the 
QTL genotypes have equal variance, a marker-associated 
variance effect contributes information that can be uti- 
lized by maximum likelihood methodology to map the 
QTL (Weller 1986). 

Genotype determination at the DNA level is still 
quite costly, both in terms of labor and laboratory re- 
quirements, on a per individual basis (Kashi et al. 1986). 
For many plant species the cost of growing and scoring 
individual plants for the traits of interest may be much 
less than the cost of the genotype determination. Fur- 
thermore, for certain animal species, especially dairy 
cattle, large data banks on traits of economic interest are 
available at virtually no cost (Weller et al. 1990). Rather 
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than genotyping a random sample from the population 
scored for a quantitative trait, individuals should be se- 
lected so as to maximize power to detect segregating 
QTL. Several studies have shown that power to detect a 
QTL effect on the trait mean is increased by selecting 
those individuals with the most extreme phenotypes for 
the trait (Lander and Botstein 1989; Lebowitz et al. 1987; 
Soller 1990). However, these studies did not consider the 
effect of"selective genotyping" on power to detect segre- 
gating QTL variance effects. 

If  the population is a mixture of two genotypes with 
different variances but equal means for the quantiative 
trait, then the genotype with the higher Variance will have 
a higher frequency at the extreme ends of the distribu- 
tion, while the genotype with the lower variance will have 
a higher frequency near the mean. Therefore, if only 
individuals with extreme phenotypes are selected for 
genotyping, then most will be of the genotype with the 
higher variance. However, no difference is expected in 
the relative frequency of the two genotypes in the groups 
selected for low versus high trait value. Thus, both indi- 
viduals with extreme phenotypes and individuals with 
phenotypes close to the mean should be genotyped to 
detect a marker-linked variance effect. 

The objectives of this study were to determine: (1) the 
effect of selective genotyping on the power to detect vari- 
ance effects, (2) the power of alternative sampling strate- 
gies to detect variance effects, as a function of total pop- 
ulation size and number of individuals genotyped, and 
(3) the optimum sampling strategy to detect QTL vari- 
ance effects. 

Genetic and statistical models 

A number of different experimental designs of QTL de- 
tection have been considered (Knapp etal., 1990). 
Among them are analyses of whole-sib pairs, backcrosses 
(BC), testcrosses (TC), F2 progeny from a cross between 
inbred lines, doubled haploids, recombinant inbred lines, 
and various combinations thereof. Most of the early 
studies considered linkage between a QTL and a single 
genetic marker, while most of the more recent studies 
have assumed a QTL bracketed between two linked ge- 
netic markers (Knapp et al. 1990; Paterson et al. 1988, 
Tanksley et al. 1982; Weller 1987; Weller et al. 1988). For 
this study, the significant difference between these de- 
signs is the number of different QTL and marker geno- 
types. We chose the BC design with inbred lines and a 
single genetic marker because it is the most amenable to 
analysis. When homozygosity is assumed for a different 
allele at both the QTL and the genetic marker in each of 
the parental strains, BC progeny have only two geno- 
types for both the QTL and the genetic marker. Under 
these same conditions, F 2 progeny with a single segregat- 
ing marker have three genotypes for each locus, and F z 

progeny for two linked markers have nine marker and 
three QTL genotypes. In addition we assumed: 
1) complete linkage between the genetic marker and the 

QTL; 
2) that the putative QTL affects only the variance, but 

not the mean of the quantitative trait; 
3) a normal distribution for the quantitative trait, with a 

phenotypic variance of unity for the genotype with the 
lower variance; 

4) a probability of 0.5 for either genotype at both loci in 
the BC population. 

In the discussion we will consider the implications of 
removing some of these restrictions. 

Description of the simulations 

BC populations were simulated using the NORMAL  and 
U N I F O R M  functions of SAS (SAS Institute Inc. 1985). 
The genotype of each individual was determined by ran- 
dom sampling from a uniform distribution between 0 
and 1. I f  a value of less than 0.5 was obtained, then the 
individual was assigned the QTL and linked-marker 
genotype with the lower variance (~12= 1). Otherwise, 
the individual was assigned the QTL with the higher" 
variance (~2 2 > 1), The simulated ratio of the variances, 
~22/~12, was denoted G*. The trait value for each individ- 
ual was determined by random sampling from a normal 
population with a mean of zero and a variance of either 
~12 or  ~22, as previously determined. The number of 
individuals per population (N) was varied from 500 to 
4000 individuals. 

Three stratified sampling strategies were tested; tails 
only, center only, and both tails and center. For the last 
sampling strategy, the ratio of individuals sampled from 
the tails to the total sample, R, was varied form 0.1 to 0.9. 
Three values were tested for p, the fraction of the popu- 
lation sampled: 0.05, 0.1, and 0.15. The standard normal 
integral was used to determine the appropriate trunca- 
tion points for each sampling strategy, under the assump- 
tion that an equal mixture of two normal distributions 
with the same means and different variances will approx- 
imate a normal distribution. The variance of the total 
population will be equal to the mean of the variances of 
the two component distributions. This approximation 
was compared to the precise truncation points obtained 
by summing over the two separate normal integrals from 
-oe  until the required probability was obtained. 

Number of individuals of  each genotype sampled, 
"observed" variances of the sampled individuals for each 
genotype from both the center and the tails of the distri- 
bution, and ratio of these variances were computed for 
each population sampled. Ratios of the observed vari- 
ances were denoted G, as opposed to G*, the simulated 
ratio. Twenty replicates were simulated for each combi- 
nation of parameters. 
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Estimation of statistical power 

The expected distr ibution of  the G-stat is t ic  under the null 
hypothesis of  equal variance is not  equivalent to the 
central F-dis t r ibut ion for two reasons. First,  the strati- 
fied samples will have non-normal  distributions. Fur-  
thermore, since the individuals were selected by trunca- 
t ion selection on mixtures of  two distributions,  the two 
samples being compared  are not  independent.  Therefore, 
the expected distr ibution of  the G-stat ist ic under the null 
hypothesis was est imated by sampling from simulated 
populat ions  of  N = 2 , 0 0 0  by the same strategies given 
above, with p = 0 . 1  (number of  individuals selected for 
genotyping, n = 200), and R varied from 0 two 1 by incre- 
ments of  0.1. One thousand replicates were simulated for 
each value of  R. The distr ibutions of  the G values for 
each group of  1,000 replicates were compared  to the 
theoretical F-dis t r ibut ion  for appropr ia te  degrees of  free- 
dom. Deviat ion of  the observed G distr ibut ion from the 
central F-dis t r ibut ion was tested by Chi-square (Aa). 

Power to detect a variance effect with type I error  of  
~ =  0.05 was est imated with R varying from 0 to 1 by 
increments of  0.1; N = 2,000, and n = 200, under the alter- 
native hypothesis of  G* = 1.3. One thousand populat ions  
were simulated for each R value. Power with stratified 
sampling was compared  to power obtained with r andom 
sampling. With  r andom sampling the ratio of  the vari- 
ances of  the two genotypes will have a non-central  F-dis-  
t r ibut ion under the alternative hypothesis.  Probabil i t ies 
for the F-dis t r ibut ion  were computed  using the P R O B F  
function of  SAS (SAS Insti tute Inc 1985). 

Results 

Distr ibut ion of  the G-statistic,  under  the null hypothesis  
of  equal variances from stratified samples with p- -0 .1 ,  
n = 200, G* = 1, and R varied from 0 to 1.0 by increments 
of  0.2 is shown in Table 1. The theoretical F-dis t r ibut ion  
for a sample of  1,000 populat ions  and the X 2 values for 
deviat ion from this distr ibution are also given. At  
R < 0.4, the variance of  G was greater than F; at R = 0.4, 
the distr ibution of  the G-stat is t ic  was not  significantly 
different from the F-dis t r ibut ion (e<0.05) ,  and at 
R > 0.4, the variance was lower. Thus, assumption of  an 
F-dis t r ibut ion for the null hypothesis resulted in overesti- 
mat ion  of  the significance level to detect a variance effect 
for R-values >0 .4  and underest imat ion of  the signifi- 
cance level for R-va lues>0.4 .  Even with R = 0 . 2 ,  less 
than 1% of  the samples had  a G-value > 2. 

The approximate  t runcat ion values used are com- 
pared to the precise t runcat ion values in Fig. 1 for 
G*- -1 .5 ,  R = I . 0 ,  and p varied from 0.01 to 0.1. At  
p = 0.08 the two t runcat ion values were nearly equal. A t  
lower p-values the precise t runcat ion point  was higher, 
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Fig. 1. Truncation points for a mixture of two normal distribu- 
tions with equal means and a variance ratio of 1.5, as a function 
of p; the probability > Z where Z is the abscissa for the normal 
distribution with the lower variance in standard deviation units. 
- -  Precise truncation values, based on summing the normal 
integrals; - -  approximate truncation values, based on assuming 
a normal distribution for the mixture 

Table 1. Distribution of variance ratios (G) as a function of 
R = (sample from tails)/(total sample) for a simulated variance 
ratio, G* = 1.0" 

G b Frequencies (R) Flo0/100 
distri- 

0 0.2 0.4 0.6 0.8 1.0 bution 

<0.4 0 2 0 0 0 0 0.0 
0.4-0.5 0 16 0 0 0 0 0.3 
0.5-0.6 0 34 5 0 0 0 5.3 
0.6-0.7 0 77 30 3 0 0 32.4 
0.7 0.8 15 109 78 57 8 0 95.1 
0.8-0.9 96 125 155 164 113 1 166.5 
0.9-1.0 243 137 200 281 392 175 200.3 
1.0-1.1 311 129 183 282 340 651 182.7 
1.1-1.2 207 96 157 150 127 166 135.5 
1.2-1.3 93 86 90 45 17 6 86.1 
1.3-1.4 25 58 61 11 3 1 48.6 
1.4-1.5 7 39 29 5 0 0 25.1 
1.5-1.6 3 30 7 1 0 0 12.1 
1.6-1.7 0 15 5 1 0 0 5.6 
1.7-1.8 0 18 0 0 0 0 2.5 
1.8-1.9 0 14 0 0 0 0 1.1 
1.9-2.0 0 7 0 0 0 0 0.4 

>2.0 0 8 0 0 0 0 0.2 

X 2c 281 846 16 218 600 1,676 

" One thousand populations were simulated for each sampling 
strategy; 200 individuals were selected from populations of 2,000 
b Variance ratio. G values <0.6 and > 1.6 were combined for 
the )~2 test, thus df= 12 
c Z2 for deviation of the G_distribution from the F_distribution; 
0.05 and 0.01 significance levels for g 2 with 12 dfare 21 and 26, 
respectively 

while at p = 0.1, the precise t runcat ion point  was slightly 
lower. Thus at low p-values the expected sample size 
selected from the tails is slightly larger than that  obained 
with the precise t runcat ion values. 

Mean G-values as a function of  R are presented in 
Table 2 for p = 0 . 1  and N=2 ,000 ,  with R varied from 0 
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Table 2. Observed mean variance ratios (G) and proportion of individuals selected from each genotype from a stratified sample as 
a function of the simulated variance ratio (G*) and R = (sample from tails)/(total sample) 

G* Statistic" Fraction of sample from tails/total sample (R) 

0.0 0.1 0.2 0.4 0.5 0.67 0.75 1.00 

1.1 G 1.05 1.33 1.22 1.19 1.16 1.15 1.10 1.06 
nl/n 2 1.09 1.04 0.99 0.96 0.88 0.91 0.91 0.87 

1.2 G 0.98 2.87 2.06 1.53 1.38 1.23 1.17 1.06 
n l /n  2 t.17 1.06 0.98 0.89 0.83 0.78 0.75 0.71 

1.3 G 1.06 4.50 2.78 1.74 1.46 1.42 1.21 1.12 
n l /n  z 1.15 1.04 0.97 0.85 0.81 0.74 0.72 0.67 

1.4 G 1.95 29.56 3.61 2.32 1.87 1.51 1.41 1.14 
nl /n  z 1.17 1.06 0.97 0.84 0.73 0.68 0.66 0.58 

1.5 G 1.00 5.86 3.97 2.59 2.02 1.62 1.56 1.16 
nl/n 2 1.35 1.03 0.90 0.80 0.70 0.65 0.58 0.51 

n 1 = number of individuals with QTL genotype with the lower variance; n 2 = number of individuals with QTL genotype with the higher 
variance 
" G = mean variance ratio obtained from 20 simulations, each consisting of 200 individuals genotyped from a population of 2000 
individuals 

to 1.0. With  either all of  the individuals selected f rom the 
tails or all of  the individuals selected from the middle,  
observed G-values were smaller than the simulated G*. 
The critical central F-value for c~ = 0.05 is 1.4. F o r  R = 1, 
none of  the G-values were greater than the critical F-val-  
ue, and for R = 0, only G* = 1.4 was greater. Within these 
extremes, G-values increased with decreased R. With  
R = 0 . 1  (only 1% of  the individuals from the tails), the 
G-values were more than double the G* values. Since the 
expected number  of  individuals selected from each tail 
was only 10, it is possible that  all, or nearly all of  the 
individuals from the tail could be of  a single genotype. 
This would have resulted in an enormous rat io and could 
explain the value of  29.56 obtained for G * =  1.4, even 
though this value was the mean of  20 simulations. Similar 
results were more frequent with smaller N (data  not  
shown). 

F o r  R-values from 0.67 to 0.75, G-values were similar 
to those obtained by random sampling, while the vari- 
ance of  the G-dis t r ibut ion  under  the null hypotheses was 
less than that  of  the F-dis t r ibut ion.  As the fraction sam- 
pled from the tails increased, the number  of  individuals 
having the genotype with higher variance also increased. 
With  R = 1.0, up to 65% of  the individuals selected had 
the genotype with the greater variance. This difference is 
significant by X 2 with one degree of  freedom (e = 0.01). 

The effects of  varying N and n on mean G-value were 
tested separately. The results are shown in Table 3 for 
mean G-value from a stratified sample with R =0 .67 ,  
p = 0.1, and N varying from 500 to 2,000. The expected 
number  of  individuals selected for genotyping for each 

simulation were Np  = n =  50, 100, and 200, respectively. 
In general, G values were greater than G*, al though, as 
expected, there was more r andom variat ion for small 
samples. 

The effects of  varying N and p, with n = 200 and 
R--0 .67 ,  are presented in Table 4. The fraction selected 
was varied from 0.05 to 0.15; thus N was varied from 
4000 to 1333. Differences for G for the different values 
for p increased with the increase in G*, but, in general, 
as p decreased, G values increased only slightly. Fo r  
example, for p = 0.05 and G* = 1.3, G was 1.51. The same 
G value was obtained for p = 0 . 1  and G * =  1.4, and was 
slightly less than the G value obtained for p = 0 . 1 5  and 
G* = 1.5. 

Distr ibut ions of  G with G* = 1.3, N = 2,000, n = 200, 
and R varied from 0 to I by increments of  0.2 are present- 
ed in Table 5. The non-central  F distr ibution for an ex- 
pected variance rat io of  1.3 is also given. Statistical pow- 
er with type I error of  c~ = 0.05 and R varied by incre- 
ments of  0.1 has been plot ted in Fig. 2. A thi rd-order  
polynomial  curve was fitted to the da ta  points.  Al though 
the power values are each the result of  1,000 simulations 
computed  under  the null and alternative hypothesis,  ran- 
dom variat ion is still significant. F o r  example, power  at 
R =  1.0 is slightly greater than power  at R =  0.9. Under  
the null hypothesis of  equal variance and type I error  of  

= 0.05, the critical values were 1.4 for the F-dis t r ibut ion 
and 1.7, 1.4, and 1.3 for the G-dis t r ibut ions  with R of  0.2, 
0.4, and 0.6, respectively. The corresponding critical val- 
ues for c~=0.01 were 1.6 for the F-dis t r ibut ion and 2.0, 
1.5, and 1.4 for the G-dis t r ibut ions (Table 1). Critical 
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Table 3. Observed mean variance ratios (G) and proportion of 
individuals selected from each genotype from a stratified sam- 
ple, as a function of the simulated variance ratio (G*) and 
number  of individuals scored for the quantitative trait (N), with 
0.033 of these individuals selected from each tail and 0.033 from 
the center of the distribution 

G* Statistic a Number  scored for trait (N) 

500 1000 2000 

1.I0 G 1.18 1.09 1.15 
n l / n  z 1.05 0.82 0.90 

1.20 G 1.34 1.34 1.23 
n~/% 0.85 0.86 0.78 

1.30 G 1.40 1.29 1.42 
n l / n  z 0.74 0.70 0.74 

1.40 G 1.85 1.51 1.51 
n l /n  z 0.70 0.60 0.68 

1.50 G 1.79 1.20 1.62 
n l / n  2 0.46 0.66 0.65 

n 1 = n u m b e r  of individuals with QTL genotype with the lower 
variance; % = number  of individuals with QTL genotype with 
the higher variance. The expectation of n 1 + n 2 = N (0.1) 

Table 4. Observed mean variance ratios (G) and proportion of 
individuals selected from each genotype from a stratified sample 
as a function of the simulated variance ratio (G*), and the 
fraction sampled for genotyping from the total population 
scored for the quantitative trait (p), with one-third selected from 
each tail and one-third from the center of the distribution a 

G* Statistic b Proportion selected for 
genotyping (p) 

0.05 0.10 0.15 

1.10 G 1.11 1.15 1.20 
n l / n  2 0.92 0.90 0.91 

1.20 G 1.31 1.23 1.14 
n~/n 2 0.74 0.78 0.83 

1.30 G 1.51 1.42 1.37 
n l /n  2 0.66 0.74 0.77 

1.40 G 1.60 1.51 1.44 
n l / n  2 0.64 0.68 0.75 

1.50 G 1.91 1.62 1.57 
n l / n  2 0.49 0.65 0.69 

a The number  of individuals scored for the trait (N) were 4000, 
2000, and 1333 for p=0.05 ,  0.10, and 0.15, respectively. N was 
set so that  the number  of individuals selected for genotyping 
n = Np = 200 for each value of p 
b G = m e a n  variance ratio obtained from 20 simulations; 
n 1 = n u m b e r  of individuals with QTL genotype with the lower 
variance; n 2 = number  of individuals with QTL genotype with 
the higher variance 

Table 5. Distribution of observed variance ratios (G) for a sim- 
ulated variance ratio, G*=1.3 ,  as a function of R - ( s a m p l e  
from tails)/(total sample) ~ 

G Frequencies (R) F100/100 b 
distri- 

0.0 0.2 0.4 0.6 0.8 1.0 bution 

< 1.0 504 2 1 4 7 47 92.2 
1.0-1.1 264 6 6 19 106 449 106.4 
1.1-1.2 147 3 11 58 255 436 143.4 
1.2-1.3 60 9 40 129 313 67 157.0 
1.3-1.4 17 15 51 185 204 1 146.0 
1.4-1.5 7 29 86 185 85 0 119.3 
1.5-1.6 0 35 110 167 28 0 87.8 
1.6-1.7 1 40 118 106 1 0 59.4 
1.7-1.8 0 44 126 65 1 0 37.6 
1.8-1.9 0 45 87 39 0 0 22.6 
1.9-2.0 0 41 90 21 0 0 13.0 
2.0-2.2 0 114 123 15 0 0 11.0 
2.2 2.4 0 101 79 7 0 0 3.1 
2.4-2.6 0 90 38 0 0 0 0.8 
2.6-2.8 0 79 17 0 0 0 0.2 
2.8 -3 .0  0 72 7 0 0 0 0.0 
3.0-3.2 0 67 2 0 0 0 0.0 
3.2-3.4 0 54 6 0 0 0 0.0 
3.4-3.6 0 36 7 0 0 0 0.0 
3.6-3.8 0 21 1 0 0 0 0.0 
3.8-4.0 0 26 7 0 0 0 0.0 

>4.0 0 74 1 0 0 0 0.0 

a One thousand populations were simulated for each sampling 
strategy; 200 individuals were selected from populations of 2,000 
b Expected frequency for the theoretical F distribution with 100 
df in both  numerator  and denominator  and a non-central pa- 
rameter of 30, i.e., expectation of 1.3 

1.00 

0.80 ' 
+ + 

t_ 0.60 

s e.z,o 

0.20 

04- 
0 0.2 0.4 0.6 0.8 1.0 

R -------,--- 

F ig.  2. Power to detect a variance effect, with Type 1 error, 
~=0.05,  and an alternative hypothesis that  the expected vari- 
ance ratio is 1.3, as a function of R, the fraction of the sample 
selected from the tails of the distribution. Two hundred individ- 
uals were selected fi'om populations of 2,000. One thousand 
replicates were simulated for each R-value for bo th  the null and 
alternative hypothesis. A third-order polynomial was fitted to 
the values tested 
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values of 1.4 and 1.6 for the F-distribution correspond to 
power of 0.35 and 0.15, respectively. Power for the G- 
statistic was maximum for R between 0.2 and 0.5. In this 
range power was above 0.8 (Table 5, Fig. 2). Power for 
c~ =0.01 was 0.71, 0.77, and 0.51, for R=0.2,  0.4 and 0.6, 
respectively. Thus for intermediate R values the G-statis- 
tic is significantly more powerful than the F-test on a 
random sample. For R = 0.6 and e = 0.01 the median of 
the observed G-values was slightly greater than 1.4, as 
expected for power of 0.5. 

Discussion 

Power to detect a QTL variance effect with selective 
genotyping, as suggested by Lebowitz et al. (1986) and 
Lander and Botstein (1989), was smaller than with ran- 
dom sampling. However, if a sample of individuals was 
also selected from the middle of the distribution, then 
power to detect a variance effect in most of the cases 
tested was greater than that obtained by a random sam- 
ple of the same size. 

If the primary interest in the experiment is to estimate 
mean effects, but variance effects are also of interest, a 
reasonable sampling structure would be to maximize 
power to detect mean effects, under the restriction that 
power to detect variance effects should be no less than in 
a random sample. If  2% of the individuals are selected 
from the middle and 8% from the tails, then power is still 
slightly greater than that obtained with random sampling 
(0.4 versus 0.35 for e = 0.05). With this sampling strategy, 
power to detect mean effects will be twice the power 
obtained by random sampling (Soller 1990). 

Unlike the results for mean effects, with R=0.67, 
little is gained by increasing N with a constant n, within 
the range of values tested in Table 4 (N = 1,333 through 
to 4,000). A rather surprising result was that although G 
values were low for both R =  0 and R = 1, the mean G 
value increased as R decreased even to 0.1. However, the 
variance of the expected distribution of G-values also 
increased as R decreased, thus maximum power as a 
function of R was obtained within the range of 0.2 to 0.5. 

As R increased, the number of individuals selected 
with the genotype having the higher variance increased. 
For example, with R =  1 and G* = 1.5, 65% of the indi- 
viduals selected were from the genotype with the higher 
variance. However, a preponderance of one genotype in 
the selected sample is not conclusive evidence of a vari- 
ance effect. Other factors could produce this result, such 
as unequal viability of the genotypes. 

The results expected if some of the restrictions are 
relaxed will now be considered briefly. We assumed that 
the two marker genotypes were at equal frequency in the 
population. Statistical power for a given number of indi- 
viduals sampled is maximum when the two groups being 

compared are at equal frequency. Thus, if the two marker 
genotypes are present in the population at unequal fre- 
quency, the statistical power will be decreased. We as- 
sumed that the quantitative trait had a normal distribu- 
tion. If  this is not the case, it will generally be possible to 
use a mathematical transformation to approximate nor- 
mality and then analyze the transformed variable (Weller 
1987). If the QTL affects the mean of the distribution, 
then one genotype will have a higher frequency in one 
tail, while the other genotype will have a higher frequen- 
cy in the other tail (Lebowitz et al. 1986). However, if the 
variances of the genotypes are equal, they will be expect- 
ed to have equal frequencies in the middle of the distribu- 
tion, and the variance of the genotypes in the selected 
samples will be equal. If there are more than two alMes 
present at the QTL, then the marker genotype distribu- 
tions will be a mixture of several QTL genotypes. In this 
case the variance of each distribution will also depend on 
the difference between the means of the QTL genotypes. 

Asins and Carbonell (1988) showed that for an F2 
population with incomplete linkage between the QTL 
and the genetic marker, the variance of marker genotypes 
will depend on the dominance relationship between the 
QTL alleles. Based on this finding they further concluded 
that all marker-associated variance effects can be ex- 
plained within this context. This conclusion is clearly 
inaccurate. Zhuchenko etal. (1979) found significant 
variance effects in backcross populations where the dom- 
inance relationship would have no effect on the variance 
ratio. Furthermore, when using maximum likelihood to 
estimate both the means and variances of the three QTL 
genotypes in a n  F 2 population, Weller (1986, 1987) found 
significant differences between the variances of the QTL 
genotypes, both for loci with complete and partial dom- 
inance. 
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